研究成果 | 一、主持的课题 一)纵向课题: 1. 闽江学者青年学者(省级、100万) 硅基半导体异质结构光电探测器研究 (2025.02-2028.02) 2. 国家自然科学基金面上项目(国家级、54万) Si基InP赝衬底匹配外延GeSn机理及GeSn中波红外线阵探测器研究(2026.01-2029.12) 3. 国家自然科学基金(国家级、30万) 全键合长波长InGaAs/Si单光子雪崩探测器基础研究 (2021.1-2023.12) 4. 福建省自然科学基金(省级、10万) InP-O-I基高Sn组分GeSn薄膜外延生长研究 (2024.11-2027.11) 5. 福建省自然科学基金(省级、7万) Si基GeSn短波红外全光谱PIN光电探测器基础研究 (2021.1-2023.12) 6. 漳州市自然科学基金(市级、2万) InGaAs/Si异族键合基础研究 (2020.01.01-2022.12.31) 7. 虚拟仿真实验室建设资金(省级、35.8万) 集成电路制造工艺虚拟仿真实验设计与开发 (2021.9-2023.9) 8. 创新平台运行经费(30万) 硅基光电芯片研发创新平台 (2022-2025) 二)横向项目: 1. XXX微光CMOS图像传感显示模块雏形研发(500万) (2022.1-2024.7) 2. 半导体光电芯片工艺开发与芯片加工(20万) (2022.10-2025.10) 3. 硅基分子束外延XXX工艺技术开发(20万) (2024.04-2025.04) 4. 单晶二维过渡金属硫族化合物制备及其光电器件开发(20万) (2024.07-2027.07) 5. 单晶二维材料制备与转移技术开发(4.7万) (2022.11-2023.11) 6. 原子层沉积工艺技术开发(3.7万) (2022.11-2023.11) 二、发表的论文 [1] SHI, Z. W., et al. InGaAs/Si Avalanche Photodiode With High Gain and Low Dark Current Achieved by Two-Step Wafer Bonding. IEEE Transactions on Electron Devices, 2025. [2] DIAO, Y. L., et al. Magnetron sputtering growth and growth mechanism of GeSn films with Sn content exceeding 25% on InP substrates. Applied Surface Science, 2025, 699: 163122. [3] WANG, Z. R., et al. High-Gain Ge/Si Avalanche Photodetector With Stable Operation Temperature Up to 500 K. IEEE Electron Device Letters, 2025. [4] MENG, W. H., et al. High-speed low-noise InGaAs/InP PIN photodetectors on a Si platform achieved by oxygen plasma activation bonding. Optics Letters, 2025, 50(11): 3549–3552. [5] XU, X. J., et al. Selenization Mechanism of Nearly 4 in. Single-Oriented PtSe₂ and PtSe₂/n–-Si/n⁺-Si 2D–3D PIN Wide-Spectrum Polarization Detectors. ACS Applied Materials & Interfaces, 2025, 17(20): 29910–29922. [6] XU, X. J., et al. Stable Self-Powered Broadband PtSe₂/Si Pin Infrared Photodetector Based on a High-Quality Ultrapure Intrinsic Si Film Exfoliated by Si/SOI Wafer Bonding. ACS Applied Materials & Interfaces, 2025, 17(10): 15579–15592. [7] LIU, B., et al. Quantum-Confined 0D/2D/3D Heterostructure Photodetectors with an Ultrafast Self-Powered Broadband Response for Short-Wave Infrared Imaging. ACS Applied Materials & Interfaces, 2025. [8] KE, S. Q., et al. In Situ Selenization Engineered Dual Schottky Heterojunctions: A Novel Architecture for High‐Speed Broadband Photonic Communication Detector Arrays. Small, 2025: e07077. [9] LI, J. H., et al. Fabrication of a high-performance Ge/Si PIN photodetector utilizing Ge/Si hetero-bonding with a microcrystalline Ge interlayer. Optics Express, 2024, 32(27): 48858–48874. [10] SHI, Z. W., et al. Double modulation of the electric field in InGaAs/Si APD by groove rings for the achievement of THz gain-bandwidth product. Physica Scripta, 2024, 99(11): 115501. [11] CHEN, S. P., et al. High-Speed Self-Powered PdSe₂/Si 2D-3D PIN-like Photodetector with Broadband Response Based on PdSe₂ Quantum Island Structure. ACS Applied Materials & Interfaces, 2024, 16(32): 42577–42587. [12] YE, S. M., et al. Microstructure and ferromagnetism of Mn₀.₀₅Ge₀.₉₅ quantum dots/graphene heterostructures for spintronic devices. ACS Applied Nano Materials, 2024, 7(14): 16542–16552. [13] JI, T., et al. High-speed broadband PtSe₂/Si 2D-3D pin photodetector with a lightly n-doped Si interlayer based on single-oriented PtSe₂. ACS Photonics, 2024, 11(8): 3150–3159. [14] SUN, Z. W., et al. Nanometer-thick CsPbBr₃ films with embedded CsPb₂Br₅ nanowires for photodetector applications. ACS Applied Nano Materials, 2024, 7(10): 11785–11793. [15] KE, S. Y., et al. Achievement of non-charge layer InGaAs/Si avalanche photodiodes by introducing a groove ring at the bonding interface. Physica Scripta, 2024, 99(5): 055006. [16] WU, D. Z., et al. Microstructure and room temperature ferromagnetism of double-layered MnₓGe₁−ₓTe polycrystalline modified by the space-layer thickness. Applied Surface Science, 2024, 657: 159837. [17] WANG, J., et al. Interface characteristics of InP/Si heterojunction fabricated by low-temperature wafer bonding based on microcrystalline Ge interlayer. Vacuum, 2024, 223: 113103. [18] TAN, C. H., et al. Growth of single-crystalline GeSn films with high-Sn content on InP substrates by sputtering and rapid thermal annealing. Applied Surface Science, 2024, 657: 159707. [19] YAO, L. Q., et al. Low dark current lateral Ge PIN photodetector array with resonant cavity effect for short wave infrared imaging. Journal of Physics D: Applied Physics, 2024, 57(16): 165103. [20] CHEN, X. P., et al. Low voltage-driven, high-performance TiO₂ thin film transistors with MHz switching speed. RSC Advances, 2024, 14(9): 6058–6063. [21] BAO, S. Y., et al. High-gain bandwidth product of wafer-bonded near-infrared III-V/silicon APD using polycrystalline silicon bonding layer. Physica Scripta, 2023, 98(12): 125527. [22] HUANG, Y., et al. Bonding mechanisms and electrical properties of Ge/Si and Si/Si bonded wafers achieved by thin microcrystalline Ge interlayer. Journal of Alloys and Compounds, 2023, 965: 171485. [23] LI, J., KE, S., WANG, J., et al. High-quality Ge/Si hetero-bonding by sputtered microcrystalline Ge interlayer. Vacuum, 2023: 112203. [24] LIN, G., QIAN, K., DING, H., …, KE, S., et al. Effective strain relaxation of GeSn single crystal with Sn content of 16.5% on Ge grown by high-temperature sputtering. Applied Surface Science, 2023, 623: 157086. [25] JIAO, J., CHEN, X., RAO, Y., …, KE, S., et al. High-quality InGaAs films bonded on Si substrate with a thin polycrystalline Si intermediate layer. Applied Surface Science, 2023, 628: 157296. [26] CHAI, J., KE, S., HUANG, Y., et al. Effect of bubbles at the bonded interface on the performance of GeSn/Si PIN photodetector. Physica Scripta, 2023, 98(6): 065517. [27] CHEN, X., JIAO, J., YAO, L., …, KE, S., et al. Effect of the bonding layer and multigrading layers on the performance of a wafer-bonded InGaAs/Si single-photon detector. Applied Optics, 2023, 62(12): 3125–3131. [28] KE, S., XIAO, X., JIAO, J., et al. Theoretical achievement of THz gain-bandwidth product of wafer-bonded InGaAs/Si avalanche photodiodes with poly-Si bonding layer. IEEE Transactions on Electron Devices, 2022, 69(3): 1123–1128. [29] KE, S., LI, J., WANG, J., et al. Blocking of Ge/Si lattice mismatch and fabrication of high-quality SOI-based Ge film by interlayer wafer bonding with polycrystalline Ge bonding layer. Vacuum, 2022, 203: 111269. [30] LI, X., WANG, Y., CHEN, T., et al. Unencapsulated CsPbClBr₂ Film Photodetectors Grown by Thermal Vacuum Deposition Exhibit Exceptional Environmental Stability in High-Humidity Air. ACS Applied Energy Materials, 2022, 5(7): 8709–8716. [31] HUANG, D., JI, R., YAO, L., …, KE, S., et al. Strain-induced abnormal Ge/Si inter-diffusion during hetero-epitaxy process. Vacuum, 2022, 196: 110735. [32] HUANG, D., JI, R., YAO, L., …, KE, S., et al. Dislocation nucleation triggered by thermal stress during Ge/Si wafer bonding process at low annealing temperature. Applied Surface Science, 2021, 568: 150979. 三、发明专利 1. 利用非晶锗薄膜实现低温Si-Si键合的方法 2. 弱键合强度脆性键合样品截面透射电子显微镜制备方法 3. 一种无界面气泡绝缘层上锗键合方法 4. 一种耐高温高质量SOI基剥离Ge薄膜的制备方法 5. 一种无气泡无穿透位错Ge/Si异质混合集成方法 6. 一种超高质量SOI基键合Ge薄膜的制备方法 7. 一种提高剥离Si基和SOI基Ge薄膜质量的方法 8. 一种实现晶格阻断的零气泡Ge/Si异质混合集成方法 9. 一种无气泡坑超高质量SOI基Ge薄膜异质键合方法 |